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CALCULATION OF THE FLOW OF A POLYDISPERSED SYSTEM 

OF PARTICLES 

A. K. Azhibekov UDC 532.529 

We discuss a model which can be used to compute the velocities and temperatures 
of solid and liquid particles in the presence of collisions and coagulation. 

Calculation of the flow of a polydispersed system of solid and liquid particles has been 
considered by numerous researchers in recent years ([1-4] and others). This is because of 
the great abundance of multiphase systems in nature (aerosol processes in the atmosphere) 
and in technology (flow of a gas with suspended particles in a nozzle, carburetion processes 
in combustion chambers, etc.). 

We consider the steady one-dimensional flow of a polydispersed system of solid and 
liquid particles in a gas. As an example, we consider the motion of a three~ phase system 
consisting of a gas, solid dust particles, and water droplets, whexethe latter two phases 
are suspended in the gas. The system flows in a channel of variable cross section (a 
venturi serving as a dust trap). The fundamental problem is to determine the parameters of 
the three-phase mixture and to calculate the degree of precipitation of solid particles into 
the liquid droplets, the pressure drop, and the temperature decrease of the carrier medium. 
Obviously in order to be able to solve this problem, we must know the size distribution func- 
tions of the solid particles dN I = f(61)d61, m -3 and the liquid droplets dN 2 = f(6=)d(62), 
m -3 under a variety of conditions. The most significant factor for these distributions is 
the collision and coagulation of particles of different fractions. There are three types 
of collisions for the problem considered here: a) solid particle-solid particle collisions; 
b) liquid droplet-liquid droplet collisions; c) solid particle-liquid droplet collisions. 

From the estimates of [4] we assume that collisions between solid particles do not lead 
to their coagulation; these collisions are then termed ineffective. On the other hand, the 
other two types of collisions are effective, and each collision leads to complete coagulation 
of the particles. We note that collisions of the last two types are the basic process of 
dust capture and therefore the degree of purification of the exhaust gas depends on the fre- 
quency and effectiveness of these collisions. Strictly speaking (as shown in [i]) a not un- 
common case is when the collision leads to fragmentation of the particles, as well as par- 
tial coagulation. Processes of this type are not considered at all in the present paper. 

A collision leads to an excess (or deficit) of momentum and energy of the newly formed 
(as a result of coagulation) particle. Therefore the velocity and temperature of the newly 
formed particle can differ significantly from the velocity and temperature of particles of 
the same size but not subjected to perturbing factors. In addition, it is very important 
in the solution of problems of this kind to take into account the fact that solid particles, 
which earlier had precipitated into liquid droplets, can return to the flow after the drop- 
lets have completely evaporated. 
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In [4-6] it was assumed that the velocity and temperature of particles formed as a re- 
sult of coagulation were identical to the velocity and temperature of particles having the 
same size from the start of motion. But this assumption is inconsistent with the conserva- 
tion laws. In addition, the return of solid particles back into the gas flow from completely 
evaporated droplets was not taken into account. 

We e~plain the method and approach used in the present paper for the example of the 
evolution equation for the number of liquid particles f(62) of a certain size 8 2 in the pre- 
sence:of collisions and coagulation. According to [5], we can write the distribution func- 
tion in the form 

: (82, x) - u~ (o) s (o) [: (82, o) + 
u2 (x) s (x) 

f u~(x) s(x) [Ij--12] ~ ]  
o u2 (0) s (0) u2 (x) ] ' 

( I)  

where Iz and 12 are the integrals giving the production of particles of size 85 from par- 
ticles of sizes 82 ' and 6~, 82" = 3/8~ - (8~) 3, and the loss of particles of size 62 be- 

cause of collision and coagulation with particles of all other sizes 8~. These integrals 
are given by 

621~ 
11= S k(82, 6;)t(6;)dT;, 

0 

(2) 

(3) & = : ( 8 2 )  k(82, * * d65 
0 

According to the classification adopted in [i], this approach is known as the discrete 
approach (abrupt changes of the state of the particle 6 2 due to collisions) and the method 
is the Euler method. 

The velocity u= of the liquid particle appears in (i). In order to determine this 
quantity it is necessary to take into account coagulation between the droplets and also 
collisions of the droplets with solid particles. Strictly speaking, each collision between 
a solid and liquid particle leads to the formation of a new kind of particle, whose proper- 
ties are different from those of the colliding particles. It would then be necessary to 
introduce additional distribution functions in velocity, temperature, number density, and 
so on, and this would significantly complicate the practical utility of the method. There- 
fore we do not take into account the change in the properties of a droplet when a number of 
solid particles are absorbed by the droplet. This assumption becomes more applicable the 
smaller the number and size of the solid particles in comparison with the water droplets [4]. 

In calculating the flow of a polydispersed system of solid and liquid particles it is 
not sufficient to consider only the evolution of the composition, as was done in [2, 3], for 
example. Rather the changes in the velocities and temperatures of the particles and the 
carrier medium must also be determined. In this case an important question is how the ex- 
cess (or deficit) of momentum and energy of the produced particles are redistributed in the 
system. Two hypotheses were discused in [i, 7]. The first is that the momentum and energy 
excess is uniformly distributed among particles of the same fraction; the second is that the 
excess is rapidly transferred to the carrier medium. According to the estimates of [i, 7], 
preference should be given to the first hypothesis. We will use this assumption in calcu- 
lating the velocities and temperatures of particles for the three types of collisions men- 
tioned above. 

In its most general formulation, the elementary theory of mechanical collisions was 
developed in the mid-1960's in the works of G. L. Babukhi [8]. According to this theory 
the one-dimensional equation of motion of a polydispersed ensemble of solid particles with 
collisions, but without coagulation, has the form 

du(61, x) -- Bl + 0,75 (1-- k~) ~ - ( E n  (61-[-6])z u~--ul  (4) dx ua ~ 8]+(8;)  3 u] lu;--ull(61)3f(6;)d6;" 
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Here Bz is the right hand side of the equation of motion of a single particle for vertical 
flow and is given by 

--:-3 ?~ ,_2__o (~ -  ~ ) I~ - -  u~l + g , (5) 
BI 

4 P~oi~ u~ L~ 

24 4 
where ~ =-~e ~- ~-e- is the drag coefficient of a solid particle [4]; k n ~ (-i; 0) is 

the coefficient of restitution of the normal component; and Ezz is the coefficient of cap- 
ture. 

In view of the fact that heat transport is weak in collisions between particles that 
do not lead to coagulation, we can neglect it. The temperature of a particle can then be 
found from the heat transfer equation for a single particle [9]. 

Under certain conditions particles captured earlier by droplets can appear in the flow 
at a certain distance x from the start of motion. (Here and below we consider the case when 
t > t(62) and t > t(61).) We now formulate this problem. Suppose the liquid particles in 
the initial flow-are distributed in a certain way f(62, x) = f(62, 0); see Fig. i. 

At the point xz all droplets with sizes between zero and 6~ are evaporated; at x= all 
droplets up to size 6~ are evaporated, at x S all droplets up to 6~' are evaporated, and so 
on. We can then construct the dependence of 62e v on the coordinate x (Fig. 2). In a segment 
dx droplets are evaporated which on entry had sizes between 62e v and 62e v + (d62ev/dx)dx. 

During the motion, particles of size 6 z precipitate into droplets with sizes from zero to 

62 ev 
62ev, and the number of precipitated particles is [(61) .I' k(~1, 62)[(62)d62 

0 

It is very important to know the total number of particles of size ~ liberated from 
all evaporating drops from the start of motion. This can be written as 

82 ev (6) .  Af(8]) ~ ([(8]) i" k(81, 8~)f(8~)dS~dx. 

The solid particles returning to the flow from evaporating droplets can be included in 
the equation of motion (4) by introducing a correction to the velocity of a particle of 
size 61 in the form 

] 62ev 

B~ - t' k (6~, 8~) f (~)  [u ( 6 ~ ) -  u (~)]d~.  
(7) 

The heat transfer equation of the particle can be written in this case as 

dr(8], x) _ a(6])s(8~)[t--t(6~)] 

dx - - - n / 6 ~ . o i P  sol6~;z (8,) + 

4-~.(~0 oJ k(6~, 6~)/(6~) t(6~)--t(~)+ u(6~)-.(6~))~ d~. (S )  

The first term inside the square brackets in (7) is the velocity of a solid particle 
of size 61, which is equal to the velocity of a droplet of size~2 (u(~2)) up to the instant 
of complete evaporation of the droplet. The second term is the velocity of a solid particle 
u(6 I) of the same fraction 61 which has not precipitated into the droplet. In the heat 
transfer equation for the particle (Eq. (8)), the first term on the right hand side takes 
into account heat exchange of a single particle with the gas, and the second term is a 
correction to the temperature due to the "liberation" of solid particles from evaporating 
droplets. Similarly, the first term inside the square brackets of the second member of (8) 
is the temperature of a solid particle inside the droplet up to the instant of evaporation. 
We assume that the temperature of the particle in this case is equal to that of the droplet 
(t(62)). The second term is the temperature of a "free" solid particle of the same fraction 

1405 



;' (%, o) 

l Iv  t t t  

Fig. i. 

b 

J 
o x t x z x~ x 

Initial droplet size distribution (a) and flow 
pattern (b). 

~2ev ,I 

:c r x x 2 x 

F ig .  2. Dependence of  t h e  s i z e  of  
an e v a p o r a t i n g  d r o p l e t  on t he  coor -  
d i n a t e  x.  

61(t(6z)). The velocity correction (7) and the temperature correction of the particle 
(second term in (8)) are obtained assuming that the excess momentum m(61)[u(62) - u(61)] 

and energy  m(~l ) [c~ t (~2) - - t (~ l ) )+-~(u(82) - -u(~ l ) )~] ,  due to  e v a p o r a t i o n  and e a r i e r  c a p t u r e d  

s o l i d  p a r t i c l e s  r e t u r n i n g  to  t he  f low,  a re  u n i f o r m l y  d i s t r i b u t e d  among p a r t i c l e s  w i t h  s i z e s  
between 61 and 61 + d61. 

In  t h o s e  ca ses  when e v a p o r a t i o n  does no t  l ead  to  comple te  d i s a p p e a r a n c e  of  t h e  d r o p l e t ,  
t h e  t e m p e r a t u r e  of  t h e  p a r t i c l e  must  be d e t e r m i n e d  from t h e  h e a t  t r a n s f e r  e q u a t i o n  f o r  a 
single particle interacting with the gas (the first term in (8)). 

If the droplets collide as they move, and if each collision leads to coagulation, the 
equation of motion of a droplet of size 6 2 must be written in the form 

du (8~, x) _ B~ + 1 ( 9 )  
dx u (8~) ~(82) .t k (8~, 8~) [ (8~) [ (8~) ~ (83, 8~) [U2~-- u (82)] dS~. 

0 

Here B 2 is the right hand side of the equation of motion of a single droplet, and is given 
by 

3 p (w--u~) lw--ud + g 
B= = - ~ % - -  - - ,  (i0) 

Pli~2 u2 U2 

where ~=~i[|+0,03 P(W--ue)l~--u21~ ]2 is the drag coefficient of the droplet; ~1 is the 
[ ] 

drag coefficient of a rigid spherical droplet, and the expression in the square brackets is 
2 

the correction due to flattening of the droplet; ~(8~, ~2) = [I--(62/~2)~] --~ is a function taking 

into account the nonlinearity of the relation 6~ = (6=') 3 + (62") 3 [5]. 

The equation for heat and mass transfer of a droplet, with the coagulation correction 
included, has the form 

dt(8~' x) - -  A ' +  u(82)f(8~) [ 2 ~ 1 i :  k(6~, 6~)[(6~)f(a~)~(~, 8~) T ~ - - t ( 6 , ) +  U~ , - -u (8 ~ ) )  ~ d6~. (11) 
0 
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Here A 2 is the right hand side of the equation of heat and mass transfer between a single 
droplet of size 6= and the gas, and is given by 

Ao. = a (`%) s (,%) I t  - -  t ( ,h ) l  - -  r [1~ 0%) s (,%) [c (,%) - -  c l l  
(12) 3 u 

-~ c ~iq ~ ~q ~ (~) 

Along with coagulation of droplets, the motion of a polydispersed system of solid 
particles and droplets is accompanied by particle-droplet collisions and coagulation. 

The equation of motion of a droplet, including collisions with solid particles, can 
be represented in the form 

(~, x) ( 13 ) 
dx u(6~) o 

Here Ba2 is the right hand side of the equation of motion of a droplet of size 62 (given by 
(9)), including the coagulation correction due to collisions of droplets of sizes 62 ' and 
621~ . 

The change of temperature of the droplet in this case can be found from the expression 

(14) 

-i [ l dt(6~, x) _ A 2 ~ +  1 k(6~, 6~)f(6~) T ~ - - t ( 6 ~ )  -- U ~ - - u ( 6 ) ]  ~ dS~. 
dx u(6~) 

Here A22 is the right hand side of the equation of heat and mass transfer with coagulation 
between droplets taken into account (given by (ii)). 

The first term inside the square brackets of (9) and (13) is the velocity of a droplet 
of size 62, which was either created by the coagulation of droplets of sizes 6~ and 6~ (the 
term U22) or it collided and combined with a particle of size 61(the term Ual). The second 
term is the velocity of a droplet of the same size 62 which did not undergo collisions, and 
is given by (i0). Similarly, the first term inside the square brackets of the heat and mass 
transfer equations (ii) and (14) is the temperature of a droplet of size 62 which either was 
created by coagulation of two smaller droplets 6~ and 6~ (the term T22) or it collided and 
combined with a particle of size 6~(the term T21). The second term is the temprature of a 
droplet 62 which did not undergo collisions (and is found from (12)). 

The velocities U22 , U2~ and the tempratures T22 and T2] ' are given by the expressions 

�9 3 6 u=,= (8~p.(8~)+(~;)~u(6;) c%,= ,%o__~?u(60+p~q~u(~). 
(6~)~ + (6;)~ ' ~o~  + p ~q 8~ ' (15) 

%~o~,t (%) + c~q o~i~.~ (~) 
(6~) ~ -F (6~) 3 ; r2~ ---- 63 

CSO~SO(~I 3 -~ C. liqpli q 2 

The coagulation corrections in the equations of motion (9) and (13), and in the heat 
and mass transfer equations (ii) and (14) were obtained assuming that the collision-induced 
excess momentum m(6=)[U22 -u(62)] in (9) and m(6=)[U=l -u(62)] in (13) and energy m(8=)[Cliq 

L 
l ] [ 1 (u~l--u (~))21 (T~--t(6~))--~---~(U~2--u(62)) 9" in  (11 )  and m(6~) C l i q ( r ~ l - - t ( 6 2 ) ) - ~ - ~  i n  (14)  a r e  

u n i f o r m l y  d i s t r i b u t e d  among d r o p l e t s  o f  s i z e s  be tween  6 2 and 6 2 + d6 2. 

If the number of droplets, and therefore the probability of collision between droplets, 
is small, B22 and A22 in (13) and (14) will reduce to B 2 and A 2. The velocity and tempera- 
ture of the drops can then be found from (i0) and (12). 

Equations (4), (7), (8), (9), (ii), (13), m~d(14), together with the equations of coagu- 
lation [4, 5], heat and mass transfer [4], and the equations of motion, energy, and continuity 
of the polydispersed system of solid and liquid particles, and also the gas [6], form a closed 
system of equations. With specified boundary conditions, these equations describe the depen- 
dence of the flow parameters on the coordinate x. 
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NOTATION 

61, 62, size of solid particles and droplets; g, acceleration of gravity; w, gas flow 
velocity; u, kinematic viscosity of the gas; Psol, Pliq, intrinsic densities of the solid 
particles and liquid droplets; Cso I and Cliq, the intrinsic heat capacities of the solid 

particles and liquid droplets; ~, the surface tension; u(61), u(62) (or u I and u2), velo- 

cities of solid particles and droplets; Re=lw - u(6)16/~ , Reynolds number for the relative 
motion of a solid particle (subscript i) or of a liquid droplet (subscript 2) of size 6; 
6~, u[, size and velocity of particles colliding with a particular particle of size 61; k, 
coagulation coefficient of the particles (from [i, 4], for example); t, t(61), t(62), 
temperatures of the gas, solid particles, and droplets; ~(61), ~(~2), coefficients of heat 
transfer from particles and droplets, respectively, to the gas; ~(6=), coefficient of mass 
transfer from droplets to the gas; s(~1), s(6=), the suraface of a particle and droplet, 
respectively; r, latent heat of vaporization; c and c(6=), concentration of water vapor in 
the gas and on the surface of a droplet. 
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